

MPSoC IP Integration and Interoperability Challenges

Joachim Kunkel VP&GM, Synopsys, Inc. MPSoC 2008, Aachen

Summary

- MPSoCs are very application specific
 - Different architecture templates
- Next generation of MPSoCs will also have lots of processors and lots of non processor IP as well
- IP comes in many forms
 - Implementation
 - Verification
 - System-level
- Integration challenges at higher levels of abstraction tough
 - Interoperability and standards
 - Connected with the implementation flows
- SystemC TLM-2.0 is a great step forward
 - Will put increased focus on System-Level model availability

Where we seem to be going ...

SoC				
Networking	Consumer Portable	Consumer Stationary		
 Die area constant # cores increases by 1.4× / year Core frequency up by 1.05× / year On-demand accelerator engine frequency up by 1.05× / year 	 Rapid progress Rapid increase in processing capability, constraints on power Processing power increases by 1000× in the next ten years, Lifecycles short. 	 Performance > 120 TFlops in 2022 Functions in software Data Processing Engines Worse performance-to- power ratio Lifecycle long, application area wide 		
Multi-Core/Accelerator Engine Platform (SOC-MC/AE Architecture) Multi-Cores L2 Cache L2 Cache L2 Cache Multi-Core Multi-Core Accelerator Engine Non-Blocking Accelerator Engine Memory Control Accelerator Engine Connectivity Hi Speed Hi Speed	Main Prc.PE PE PEPE PE PE PEPE PE PE PEMain MemoryPE PE PE PE PEPE PE PEPeripheralsPE PE PEPEFunction A Function DFunction E	DPE DPE DPE DPE DPE DPE DPE DPE DPE DPE DPE DPE DPE DPE DPE DPE Main Processor IO Memory IF & Chip-to-Chip IF -		

Source: ITRS 2007

Lot's of processors

Consumer Portable

Consumer Stationary

Source: ITRS 2007

But Software is not everything ... More IP Blocks, more Re-use

- Yes, there are lots of processors
- But there are other components too
- Especially the protocols in a design require lots of connectivity IP
- Mixed Signal content is also heavily growing
- So let's not forget hardware IP

Source: Semico

IP Comes in Many Forms Raising the Level(s) of Abstraction

System-Level Integration Challenges

- System model interoperability?
- How do users connect model
 abstractions
 - Transactor interoperability?
- How do users verify the TLM model(s) itself
 - TLM Assertions
 - Verification IP for TLM
 - Verify against what?
- How are models kept in sync
 - Against RTL
 - Against silicon revisions
- System-level model interoperability and an integrated flow are required

The Impact of SystemC TLM-2.0 Like Verilog in the 90's!

©Synopsys 2008

8

Bruegel, 1563 Tower of Babel

Predictable Success

Hardware Description Languages		Virtual Platforms		
1980's	1990's	1998 - 2008	Post 2008	
Age of Proprietary HDLs Verilog VHDL HiLo DABL LASAR Aida M (Lsim) QuickSim UDL / I N dot, ISP, FBDL	HDL Standardization Verilog VHDL HiLo DABL LASAR Aida M (Lsim) QuickSim UDL / I N dot, ISP, FPDL	Proprietary APIs Roll your own (C, C++) SystemC TLM-1.0 Synopsys Virtio ARM AXYS APIs CoWare N2C APIs Virtutech APIs VaST APIs 	Age of Interoperability TLM-2.0 What it means for users: 1. Model interoperability 2. System-level simulation commoditization 3. It's all about the models!	
			Synopsys	

The Impact of SystemC TLM-2.0 Enabling Interoperability and Scalability

- Previously proprietary (backdoor) APIs & new additions have now been standardized:
- (DMI) Direct Memory Interface
 - Direct backdoor access into memory
 - Allows un-inhibited ISS execution
- LT (Loosely Timed) modeling
 - Declare but don't execute timing
 - Allows speed/accuracy trade-offs
- Temporal Decoupling
 - Only synchronize when necessary
 - Allows multicore speedup

Summary

- MPSoCs are very application specific
 - Different architecture templates
- Next generation of MPSoCs will also have lots of processors and lots of non processor IP as well
- IP comes in many forms
 - Implementation
 - Verification
 - System-level
- Integration challenges at higher levels of abstraction tough
 - Interoperability and standards
 - Connected with the implementation flows
- SystemC TLM-2.0 is a great step forward
 - Will put increased focus on System-Level model availability

